Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Hum Vaccin Immunother ; 20(1): 2339922, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38639480

ABSTRACT

The growing number of Mpox cases in China has posed a challenge to public health. The prevalence of men who have sex with men behaviors among students has been consistently increasing each year in China, accompanied by a high frequency of unprotected anal sex. As crowded places, schools are highly likely to cause an Mpox outbreak among students through long-term close contact. Understanding university students' perceptions about Mpox and willingness to vaccinate play a vital role in implementing preventive measures in schools. This study aimed to assess knowledge, concerns, and vaccine acceptance toward Mpox among university students in North and Northeast China. A cross-sectional study was conducted among 3831 university students from seven universities in North and Northeast China between September 10 and September 25, 2023. This study found a relative insufficiency in Mpox knowledge among university students (71.60%), with less than half expressing concern about the Mpox outbreak (39.57%), and the majority exhibiting a positive attitude to vaccination (76.30%). Multivariate regression analysis revealed that a good knowledge level was associated with age, study discipline, education level, and a high level of concern about Mpox. Male, elderly, or highly educated participants had a low level of concern about Mpox. Participants with a high level of knowledge toward Mpox were more likely to have the vaccination willingness. This study might help governments and schools to understand students' Mpox perceptions and vaccination intentions, enabling them to implement effective measures in addressing the issue of inadequate understanding regarding Mpox among university students.


Subject(s)
Monkeypox , Sexual and Gender Minorities , Vaccines , Aged , Humans , Male , Female , Cross-Sectional Studies , Homosexuality, Male , Universities , China
2.
J Nanobiotechnology ; 21(1): 328, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689652

ABSTRACT

Small extracellular-vesicule-associated microRNA (sEV-miRNA) is an important biomarker for cancer diagnosis. However, rapid and sensitive detection of low-abundance sEV-miRNA in clinical samples is challenging. Herein, a simple electrochemical biosensor that uses a DNA nanowire to localize catalytic hairpin assembly (CHA), also called domino-type localized catalytic hairpin assembly (DT-LCHA), has been proposed for sEV-miRNA1246 detection. The DT-LCHA offers triple amplification, (i). CHA system was localized in DNA nanowire, which shorten the distance between hairpin substrate, inducing the high collision efficiency of H1 and H2 and domino effect. Then, larger numbers of CHAs were triggered, capture probe bind DT-LCHA by exposed c sites. (ii) The DNA nanowire can load large number of electroactive substance RuHex as amplified electrochemical signal tags. (iii) multiple DT-LCHA was carried by the DNA nanowire, only one CHA was triggered, the DNA nanowire was trapped by the capture probe, which greatly improve the detection sensitivity, especially when the target concentration is extremely low. Owing to the triple signal amplification in this strategy, sEV-miRNA at a concentration of as low as 24.55 aM can be detected in 20 min with good specificity. The accuracy of the measurements was also confirmed using reverse transcription quantitative polymerase chain reaction. Furthermore, the platform showed good performance in discriminating healthy donors from patients with early gastric cancer (area under the curve [AUC]: 0.96) and was equally able to discriminate between benign gastric tumors and early cancers (AUC: 0.77). Thus, the platform has substantial potential in biosensing and clinical diagnosis.


Subject(s)
MicroRNAs , Humans , Anilides , Catalysis , Leucine
3.
bioRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37546726

ABSTRACT

We report a large field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13mm 2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction stress into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave. One-Sentence Summary: An optical platform for fast, concurrent measurements of cell mechanics at 83 frames per second, over a large area of 13mm 2 .

4.
Small ; 19(49): e2303710, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37612819

ABSTRACT

The increasing demand for micro-thermoelectric coolers and generators promotes the research on thermoelectric (TE) thin films. As a promising medium-temperature TE material, GeTe has attracted wide attention recently. However, the thermoelectric performance of thin-film GeTe remains inferior. Herein, oriented GeTe films with excessive Ge are obtained by magnetron co-sputtering technique, which can not only reduce the carrier concentration but also increase the carrier mobility, maintaining the high electrical conductivity of GeTe. Furthermore, higher structural symmetry and grain boundary scattering enhance the Seebeck coefficient of oriented GeTe films. As a result, the power factor (PF) value can reach as high as 2848 µW m-1 K-2 at room temperature and increase to 5263 µW m-1 K-2 at 600 K. Furthermore, a TE device with the Ge-rich GeTe thin film is fabricated and the maximum output power density (power per unit area) reaches 0.3 W cm-2 at ΔT = 250 K. This work demonstrates that the stoichiometry and orientation modulations are effective strategies to improve the thermoelectric performance of GeTe thin films.

5.
J Econ Entomol ; 116(5): 1795-1803, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37478406

ABSTRACT

Rhopalosiphum padi is an important global wheat pest. The pyrethroid insecticide bifenthrin is widely used in the control R. padi. We explored the resistance potential, cross-resistance, adaptive costs, and resistance mechanism of R. padi to bifenthrin using a bifenthrin-resistant strain (Rp-BIF) established in laboratory. The Rp-BIF strain developed extremely high resistance against bifenthrin (1033.036-fold). Cross-resistance analyses showed that the Rp-BIF strain had an extremely high level of cross-resistance to deltamethrin (974.483-fold), moderate levels of cross-resistance to chlorfenapyr (34.051-fold), isoprocarb (27.415-fold), imidacloprid (14.819-fold), and thiamethoxam (11.228-fold), whereas negative cross-resistance was observed to chlorpyrifos (0.379-fold). The enzymatic activity results suggested that P450 played an important role in bifenthrin resistance. A super-kdr mutation (M918L) of voltage-gated sodium channel (VGSC) was found in the bifenthrin-resistant individuals. When compared with the susceptible strain (Rp-SS), the Rp-BIF strain was significantly inferior in multiple life table parameters, exhibiting a relative fitness of 0.69. Our toxicological and biochemical studies indicated that multiple mechanisms of resistance might be involved in the resistance trait. Our results provide insight into the bifenthrin resistance of R. padi and can contribute to improve management of bifenthrin-resistant R. padi in the field.


Subject(s)
Aphids , Chlorpyrifos , Hemiptera , Insecticides , Pyrethrins , Humans , Animals , Aphids/genetics , Pyrethrins/pharmacology , Thiamethoxam , Insecticide Resistance/genetics , Insecticides/pharmacology
6.
Immunol Lett ; 259: 30-36, 2023 07.
Article in English | MEDLINE | ID: mdl-37247788

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is one of the most common autoimmune diseases in China. At present, there are hundreds of autoantibodies in SLE patients; however, only a dozen of the autoantibodies can be routinely detected, and the available diagnostic antibodies are not sufficient for diagnosis or differential diagnosis of SLE patients with atypical clinical manifestations or other autoimmune diseases. Therefore, it is necessary to find new diagnostic markers to improve the diagnostic effect of SLE. METHODS: The displayed random peptide library and peptide microarray were combined to identify SLE-related epitope peptides. A case-control design was used. The IgG antibodies in the sera from SLE patients, healthy controls, and other autoimmune disease controls underwent a reaction with the phage-display random peptide library, respectively. Selected epitope peptides were used to construct a peptide chip. A total of 644 serum samples (including 296 SLE patients, 168 disease controls, and 180 healthy controls) were used for further screening and verification. Peptides with an area under the curve (AUC) > 0.650 were further verified by ELISA. Finally, 500 serum samples (including 200 SLE patients, 150 disease controls, and 150 healthy controls) were used to verify and evaluate the diagnostic and differential diagnostic efficacy of the selected peptides. RESULTS: After the previous screening, five epitope peptides (SLE_P19, SLE_P20, SLE_P27, SLE_P28, and SLE_P29) may have potential as SLE diagnostic markers. Additionally, SLE_P27 was superior to the other four peptides in the diagnosis and differential diagnosis of SLE and rheumatoid arthritis (RA). The AUC of SLE_P27 was 0.938, the sensitivity was 76.00%, the specificity was 92.70%, the positive likelihood ratio was 10.411, the negative likelihood ratio was 0.259, and the accuracy was 84.40%. The diagnostic efficacy of SLE can be increased by combining the five selected peptides with the anti-double stranded DNA antibody (anti-dsDNA) and anti-Smith antibodies (anti-Sm). CONCLUSIONS: In this study, we identified five peptides that may serve as potential biomarkers for SLE diagnosis using the strategy of combining the displayed random peptide library with the peptide microarray. The combination of selected peptides and existing autoantibodies can significantly improve the diagnostic efficiency. These specific peptides are expected to be new diagnostic markers for SLE.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Epitopes , Peptide Library , Peptides , Autoantibodies
7.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36978793

ABSTRACT

A variety of physical, emotional, and mental factors can induce a stress response in pet dogs and cats. During this process, hypothalamus-pituitary-adrenal (HPA) and sympathetic-adrenal medulla (SAM) axes are activated to produce a series of adaptive short-term reactions to the aversive situations. Meanwhile, oxidative stress is induced where there is an imbalance between the production and scavenging of reactive oxygen species (ROS). Oxidative damage is also incorporated in sustained stress response causing a series of chronic problems, such as cardiovascular and gastrointestinal diseases, immune dysfunction, and development of abnormal behaviors. In this review, the effects and mechanisms of dietary regulation strategies (e.g., antioxidants, anxiolytic agents, and probiotics) on relieving stress in pet dogs and cats are summarized and discussed. We aim to shed light on future studies in the field of pet food and nutrition.

8.
Nano Converg ; 10(1): 7, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36738341

ABSTRACT

Accurately detecting dynamic changes in bioactive small molecules in real-time is very challenging. In this study, a hemin-based peptide assembly was rationally designed for the colorimetric detection of active small molecules. Hemin-functionalized peptide nanotubes were obtained through the direct incubation of hemin (hemin@PNTs) and peptide nanotubes (PNTs) or were coassembled with the heptapeptide Ac-KLVFFAL-NH2 via electrostatic, π-π stacking, and hydrophobic interactions (hemin-PNTs). This new substance is significant because it exhibits the benefits of both hemin and PNTs as well as some special qualities. First, hemin-PNTs exhibited higher intrinsic peroxidase-like activity, which, in the presence of H2O2, could catalyze the oxidation of the substrate 3,3',5,5'-tetramethylbenzidine (TMB) to yield a typical blue solution after 10 min at 25 ℃. Second, hemin-PNTs showed significantly higher activity than that of hemin, PNTs alone, or hemin@PNTs. Hemin-PNTs with a 20.0% hemin content may cooperate to improve catalytic activity. The catalytic activity was dependent on the reaction temperature, pH, reaction time, and H2O2 concentration. The nature of the TMB-catalyzed reaction may arise from the production of hydroxyl radicals. Fluorescence analysis was used to demonstrate the catalytic mechanism. According to this investigation, a new highly selective and sensitive colorimetric technique for detecting glutathione (GSH), L-cysteine, and glucose was established. The strategy demonstrated excellent sensitivity for GSH in the range of 1 to 30 µM with a 0.51 µM detection limit. Importantly, this glucose detection technique, which employs glucose oxidase and hemin-PNTs, is simple and inexpensive, with a 0.1 µM to 1.0 mM linear range and a 15.2 µM detection limit. Because of their low cost and high catalytic activity, hemin-PNTs are an excellent choice for biocatalysts in a diverse range of potential applications, including applications in clinical diagnostics, environmental chemistry, and biotechnology.

9.
Mikrochim Acta ; 190(2): 65, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36692585

ABSTRACT

Tumor cells in blood circulation (CTCs) are vital biomarkers for noninvasive cancer diagnosis. We developed a simple and sensitive electrochemical biosensor based on dual-toehold accelerated catalytic hairpin assembly (DCHA) to distinguish CTCs from blood cells. In the presence of CTCs, the aptamer probe initiates the DCHA process, which produces amplified electrochemical signals. Compared with conventional catalytic hairpin assembly (CHA), the proposed DCHA showed high sensitivity, which led to a broader working range of 10-1000 cells mL-1 with a limit of detection of 4 cells mL-1. Furthermore, our method exhibited an excellent capability of distinguishing malignant breast cancers from healthy people, with a sensitivity of 97.4%. In summary, we have established an enzyme-free, easy-to-operate, and nondisruptive method for detecting circulating tumor cells in blood circulation based on the DCHA strategy. Its versatility and simplicity will make it more widely used in clinical diagnosis and biomedical research.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Biosensing Techniques/methods , Catalysis
10.
J Nanobiotechnology ; 20(1): 503, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457020

ABSTRACT

The profiling of small extracellular vesicle-associated microRNAs (sEV-miRNAs) plays a vital role in cancer diagnosis and monitoring. However, detecting sEV-miRNAs with low expression in clinical samples remains challenging. Herein, we propose a novel electrochemical biosensor using localized DNA tetrahedron-assisted catalytic hairpin assembly (LDT-CHA) for sEV-miRNA determination. The LDT-CHA contained localized DNA tetrahedrons with CHA substrates, leveraging an efficient localized reaction to enable sensitive and rapid sEV-miRNA measurement. Based on the LDT-CHA, the proposed platform can quantitatively detect sEV-miRNA down to 25 aM in 30 min with outstanding specificity. For accurate diagnosis of gastric cancer patients, a combination of LDT-CHA and a panel of four sEV-miRNAs (sEV-miR-1246, sEV-miR-21, sEV-miR-183-5P, and sEV-miR-142-5P) was employed in a gastric cancer cohort. Compared with diagnosis with single sEV-miRNA, the proposed platform demonstrated a higher accuracy of 88.3% for early gastric tumor diagnoses with higher efficiency (AUC: 0.883) and great potential for treatment monitoring. Thus, this study provides a promising method for the bioanalysis and determination of the clinical applications of LDT-CHA.


Subject(s)
Extracellular Vesicles , MicroRNAs , Stomach Neoplasms , Humans , MicroRNAs/genetics , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , DNA , Catalysis
11.
Medicine (Baltimore) ; 101(39): e30867, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36181069

ABSTRACT

BACKGROUND: Thymic epithelial tumors (TETs) originate in the thymic epithelial cell, including thymoma and thymic carcinoma. Surgical resection is the first choice for most patients. However, some studies have shown that the factors affecting the prognosis of these patients are not consistent. To evaluate prognostic factors in patients with surgically resected thymic epithelial tumors, we performed a meta-analysis. METHODS: We searched the Chinese biomedical literature database, Pubmed, Embase, Cochrane Library and other electronic databases. Studies including postoperative overall survival (OS) and predictors of TETs were included. We made a comprehensive analysis the hazard ratios (HRs) through a single proportional combination. HRs were combined using single proportion combinations. RESULTS: The meta-analysis included 11,695 patients from 26 studies. The pooled OS was 84% at 5 years and 73% at 10 years after TETs operation. The age as continuous-year (HR 1.04, 95% confidence interval (CI) 1.02-1.04), incomplete resection (HR 4.41, 95% CI 3.32-5.85), WHO histologic classification (B2/B3 vs A/AB/B1 HR 2.76, 95% CI 1.25-6.21), Masaoka Stage (stage III/IV vs I/II HR 2.74, 95% CI 2.12-3.55,) were the poor prognostic factors. CONCLUSIONS: For patients with TETs after surgical resection, advanced age, incomplete resection, WHO classification B2/B3, and higher Masaoka stage are risk factors for poor prognosis.


Subject(s)
Neoplasms, Glandular and Epithelial , Thymoma , Thymus Neoplasms , Humans , Neoplasm Staging , Neoplasms, Glandular and Epithelial/pathology , Neoplasms, Glandular and Epithelial/surgery , Prognosis , Retrospective Studies , Thymoma/pathology , Thymus Neoplasms/pathology
12.
Trop Med Infect Dis ; 7(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36136628

ABSTRACT

ST1193 is an emerging new virulent and resistant clone among Escherichia coli with a tendency to spread rapidly across the globe. However, the prevalence of intracranial infection-causing E. coli ST1193 is rarely reported. This study aimed at determining the prevalence of E. coli ST1193 isolates, causing intracranial infections in Changsha, central China. A total of 28 E. coli isolates were collected from the cerebrospinal fluid of patients with intracranial infection over a four-year period. All isolates were differentiated using multilocus sequence typing (MLST), and phylogenetic grouping, and tested for antibiotic resistance. MLST analysis showed 11 sequence types (ST) among the 28 E. coli isolates. The most prevalent ST was B2-ST1193 (28.6%, 8/28), followed by B2-ST131 (21.4%, 6/28) and F-ST648 (10.7%, 3/28). Of the eight ST1193 isolates, three carried CTX-M-55, and one carried CTX-M-27. All eight ST1193 isolates were resistant to Ciprofloxacin, showing gyrA1AB/parC4A mutations. Two ST1193 isolates carried the aac(6')-Ib-cr gene. All ST1193 isolates were recovered from infants with meningitis, with a fatal outcome for one three-month-old infant. ST1193 has emerged as the predominant type of E. coli strain causing intracranial infections in Changsha, China. This study highlights the importance of implementing appropriate surveillance measures to prevent the spread of this emerging public health threat.

13.
Insects ; 13(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36135538

ABSTRACT

Grapholita molesta is one of the most serious pests in fruits orchards. Flight performance of male insects and fecundity of female insects are important quality control parameters when moths are mass-reared for use in environment-friendly control strategies such as the sterile insect technique (SIT). However, information about flight performance, fecundity, and ovary development of G. molesta at different ages is scarce. In this study, we used a flight mill information system to measure the flight ability of female and male adults of G. molesta at different ages, and evaluated fecundity and ovarian development of female adults at different ages. The results demonstrated that the flight parameters (cumulative flight distance, cumulative flight time, maximum flight distance and maximum flight duration) of female and male G. molesta varied with age. Six-day-old female moths and three-day-old male moths were the strongest fliers, whereas the fecundity of one-day and two-day-old female moths was significantly lower than that of three to seven-day-old females. Five-day-old females had the highest fecundity. Their ovaries demonstrated mature eggs in the lateral and middle oviducts as of the third day post-emergence. It is suggested that the optimal age for moths to be released in SIT programs is three days, and moths older three days can be used for mass-rearing in a factory.

14.
Anal Chim Acta ; 1221: 340125, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35934404

ABSTRACT

Existing detection methods for pathogen nucleic acid detection, such as polymerase chain reaction (PCR), are complicated and expensive to perform. Here, we report a simple and versatile strategy for highly sensitive detection of pathogen nucleic acid based on toehold-mediated strand displacement initiated primer exchange amplification (t-PER). In the presence of the target, the blocked hairpin substrate is released by toehold-mediated strand displacement, which triggers the primer exchange reaction amplification. Then, multiple long tandem-repeat single-strands generated by PER open the molecular beacon to recover the fluorescence signal. The t-PER protocol also successfully directly detected human papilloma virus from clinical cervical swab samples, with consistent results compared to real time-polymerase chain reaction (RT-PCR). Moreover, the versatility and clinical feasibility of this method was further confirmed by measuring Epstein-Barr virus, hepatitis B virus, and Ureaplasma urealyticum from different clinical samples (serum samples and urine samples). This simple platform enabled specific and sensitive detection of pathogen nucleic acid in a format that might hold great potential for point-of-care infection diagnosis.


Subject(s)
Biosensing Techniques , Epstein-Barr Virus Infections , Nucleic Acids , Biosensing Techniques/methods , Herpesvirus 4, Human , Humans , Limit of Detection , Nucleic Acid Amplification Techniques/methods
15.
Insects ; 13(8)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36005349

ABSTRACT

The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) is one of the most severe fruit tree pests in China, causing huge economic losses to fruit production. So far, there are few detailed reports on the rearing protocols of G. molesta. In this study, we compared the longevity, 10-d fecundity, flight ability, and the activity of major energy metabolism enzymes in the flight muscles of G. molesta under three feeding regimes (supplement with sterile water, supplement with 10% honey solution and starvation) of the adult moths. The results showed that the longevity, 10-d fecundity, and flight parameters (cumulative flight distance and time, maximum flight distance and duration, and the average flight speed) of adult moths when supplemented with sterile water or honey solution were significantly higher than those of moths that were starved. There were no significant differences in the 10-d fecundity, flight parameters, and the activity of major energy metabolism enzymes of flight muscles between moths that were supplemented with sterile water or 10% honey solution. The flight muscles of G. molesta mainly used carbohydrates as an energy source when sterile water and honey solution were supplemented, and the moth mainly used lipids as an energy source under starvation. Considering the cost and potential for diet contamination during mass-rearing, supplying sterile water is considered a cost effective option for food substitution of adult G. molesta.

16.
J Oncol ; 2022: 1093805, 2022.
Article in English | MEDLINE | ID: mdl-35669241

ABSTRACT

Background: Soft tissue sarcomas (STSs) are rare tumors and occur at any site in the body. Our goal was to identify a putative molecular mechanism for N6-methyladenosine (m6A) lncRNA alteration and to develop predictive biomarkers for sarcoma. Methods: The lncRNA levels were obtained from TCGA datasets. Pearson correlation analysis was used to select all the lncRNAs that are connected to m6A. An m6A-related lncRNA model was built using LASSO Cox regression. To assess the prognostic efficiency of the model and potential lncRNAs, we performed univariate survival analysis and receiver operating characteristic (ROC) analysis. We also performed enrichment analysis to evaluate the roles of the potential genes. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to confirm m6A-related lncRNA expression in tissues. Results: Following Pearson correlation analysis on TCGA datasets, we identified 78 m6A-related lncRNAs. Next, we used LASSO Cox regression analysis and identified 13 m6A-related lncRNAs as prognostic lncRNAs. After calculating risk scores, sarcoma patients were divided into high- and low-risk groups depending on the median of risk scores. We also found that these lncRNAs were immune associated via enrichment analysis. Conclusions: Here, we found that SNHG1, FIRRE, and YEATS2-AS1 could serve as biomarkers to predict overall survival of sarcoma patients, which provides a new insight into treatment of STS.

17.
J Diabetes Sci Technol ; : 19322968221099879, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35695305

ABSTRACT

BACKGROUND: Between-system differences for continuous glucose monitoring (CGM) devices have important clinical consequences. PURPOSE: Here we review attributes of Dexcom's fifth-, sixth-, and seventh-generation (G5, G6, and G7) CGM systems. METHODS: Accuracy metrics were derived from preapproval trials of the three systems and compared after propensity score adjustments were used to balance baseline demographic characteristics. Metrics included mean absolute relative differences (MARD) between CGM and YSI values and the proportion of CGM values within 20% or 20 mg/dL of the YSI values ("%20/20"). Ease-of-use was evaluated by formal task analysis. CONCLUSIONS: Adjusted MARD and %20/20 agreement rates were 9.0%/93.1% (abdomen-placed G5), 9.9%/92.3% (abdomen-placed G6), 9.1%/93.2% (abdomen-placed G7), and 8.2%/95.3% (arm-placed G7). Task analysis favored G7 over earlier systems. Favorable clinical outcomes such as hemoglobin A1c reduction and hypoglycemia avoidance seen with G5 and G6 are anticipated with G7 use.

18.
Anal Chim Acta ; 1209: 339006, 2022 May 29.
Article in English | MEDLINE | ID: mdl-35569841

ABSTRACT

Intracellular substance analysis is critical for understanding cellular physiological mechanisms and predicting disease progression. Isothermal amplification technologies have been raised to accurately detect intracellular substances due to their low abundance, which is significant for the mechanism analysis and clinical application. However, traditional isothermal method still needs to cell destruction and extraction, resulting in fluctuant results. Moreover, it only works on dead cells. Therefore, non-destructive analysis based on isothermal amplification deserves to be studied, which directly reveals the content and position of relevant molecules. In recent years, metastable DNA hairpins-driven isothermal amplification (Mh-IA) blazes a trail for analysis in living cells. This review tracks the recent advances of Mh-IA strategy in living cell detection and highlights the potential challenges regarding this field, aiming to improve in vivo isothermal amplification. Also, challenges and prospects of Mh-IA for in situ and intracellular analysis are considered.


Subject(s)
DNA , Nucleic Acid Amplification Techniques , DNA/genetics , Nucleic Acid Amplification Techniques/methods
19.
ACS Sens ; 7(4): 1075-1085, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35312297

ABSTRACT

Extracellular vesicle-associated miRNAs (EV-miRNAs) are emerging as a new type of noninvasive biomarker for disease diagnosis. Their relatively low abundance, however, makes accurate detection challenging. Here, we designed a DNA nanowire guided-catalyzed hairpin assembly (NgCHA) nanoprobe for profiling EV-miRNAs. NgCHA showed high penetrability to EVs, which allowed rapid delivery of the probes into EVs. In the presence of targeted miRNAs within EVs, a fluorescent signal could be generated and amplified by confining the catalytic hairpin assembly system within the nanowires, thus greatly enhancing the analytical sensitivity. We showed that EV-miRNAs from various cell lines could be accurately quantified by NgCHA in situ. By using a four-EV-miRNA panel, this platform can identify patients with breast cancer at an early stage with 95.2% sensitivity and 86.7% specificity. Its applications for risk assessment as well as cancer type prediction were also successfully demonstrated. This platform is sensitive, low-cost, and simple compared with current methods. It may thus serve as a promising tool for the noninvasive diagnosis and monitoring of cancers and other diseases through EV-miRNA profiling.


Subject(s)
Circulating MicroRNA , Extracellular Vesicles , MicroRNAs , Nanowires , Catalysis , Circulating MicroRNA/metabolism , DNA/metabolism , Extracellular Vesicles/metabolism , Humans , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...